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Solutions of the Pell Equation z° — (a*?c? + 2ab)y? = N
when N € +1, +4.
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Abstract

Let a,b and ¢ be natural numbers and d = a?b?c® + 2ab. In this paper, by
using continued fraction expansion of v/d. We find fundamental solution of the
equations z? — (a?*b*c? 4 2ab)y* = +1 and we get all positive integer solutions of
the equations z? — (a?b*c? + 2ab)y? = +1 in terms of generalized Fibonacci and
Lucas sequences. Moreover, we find all positive integer solutions of the equations
2?2 — (a®V*c? + 2ab)y? = +4 in terms of generalized Fibonacci and Lucas sequences.
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1 Introduction

Let d # 1 be a positive square free integer and N be any fixed positive integer.
Then the equation 2% —dy? = & N is known as Pell equation and is named after John
Pell(1611-1685), a mathematician who searched for integer solutions to equations of
this type in the seventeenth century. For N = 1, the Pell equation 2? — dy? = &1
is known as classical Pell equation and was studied by Brahmagupta(598-670)
and Bhaskara(1114-1185). The Pell equation z? — dy* = +1 has infinitely many
solutions (z,,y,) for n > 1. There are several methods for finding the fundamental
solutions of Pell’s equation 2% — dy? = 1 for a positive non square integer ”d”,
e.g. the cyclic method[4] known in India in the 12" century, or the slightly less less
efficient but more regular English method (17%" century) which produce all solution
is based on the simple finite continued fraction expansion of V/d.

Let % be the sequence of convergence to the continued fraction for v/d. Then the
pair (z1,y1) solving Pell’s equation and minimizing x satisfies x; = p; and y; = ¢;



